

Adapt Waikiki 2050

Mayor Rick Blangiardi

Charrette #2

August 14, 2024 | 8:30 AM – 11:30 AM St. Andrews

Adapt Waikīkī 2050 Charrette 2

August 14, 2024

Project Team

Workshop Green, LLC

Client

Lead Consultant

Noelle Cole Dina Wong Imelda Fernandez Min Bu

Kitty Courtney Carol Hufnagel **Melissa May** Ollie Lau Erin Emerson

Wendy Meguro

Project Manager Team member

Meeting Objectives

- Introduce the project and consultant team
- Present Climate Change impacts facing public infrastructure and private development in Waikīkī through four scenarios
- Identify and discuss the feasibility and relevance of potential adaptation solutions to mitigate flood risk.

Where does Climate Change fit in the City's Land Use Planning?

O'ahu's Eight Planning Regions

AW2050 is a Special Area Plan for the Primary Urban Center...

...and a pilot project of the One Water Honolulu Panel, (ROH 2-10.13(b)

Office of Climate Change, Sustainability and Resiliency

Honolulu Board of Water Supply

Department of Environmental Services

Budget & Fiscal Services

Department of Facility Maintenance

Department of Budget and Fiscal Services

Department of Design and Construction

Department of Planning and Permitting

Department of Parks and Recreation

Department of Transportation Services

Integration Among City Plans

AW2050 Project Overview

Project Objectives

- Identify near-term (2050) adaptation measures for the Waikīkī Special District
 - Voluntary
 - Regulatory
- Identify potential City adaptation projects for near-term infrastructure resilience
- Provide a long-term (2100) outlook for the Waikīkī Special District
- Identify needed studies and institutional capacity assessments related to:
 - Long-term land use planning
 - Infrastructure and design guidelines and regulations
 - Shoreline development

AW2050 Special Area Plan – Theory of Change

IF recommendations have been evaluated, planned for, and implemented within the next 25 years, **THEN** the following results are expected in the WSD:

- Adaptation solutions extend the useful life of existing roads and subsurface infrastructure in a cost-effective manner;
- Stormwater management reduces flood impacts through grey/green infrastructure and;
- Land use and redevelopment plans, based on climate risks and City-wide infrastructure service determinations, enable viable adaptation pathways through the end of the century.
- Emergency response to extreme rainfall-driven flood and heat events protects public safety;

Charrette 1

Focused on public infrastructure

Engage with public agencies to:

- Identify current climate related impacts to surface and subsurface infrastructure
- Brainstorm/share information on near-term public resilience measures
- Explore projected impacts to infrastructure beyond 2050

Ala Wai Canal over-topping during a King Tide Image Source: UH SOEST King Tides Project

Charrette 2

Focus on the interface between public infrastructure and private development

High-wave sand movement along a Waikīkī Beach walkway Image Source: HHF for DPP

- Engage with the Waikīkī business community to:
- Identify current climate related impacts to property and operations and any current private sector adaptation(s)
- Brainstorm near-term (2050) public and private solutions and best practices
- Explore projected impacts and adaptation needs beyond 2050

Scope, Schedules and Tasks

Polling

Mentimeter

- We will be conducting polling during todays meeting using Mentimeter.
- To participate please either
 - Open a new browser window and enter: menti.com and add the code 7224 7237
 - $\odot\,\textsc{Or}$ scan the QR code below that will take you to the polling questions

Climate Risk Profile

CASCADING & COMPOUNDING EFFECTS OF KEY CLIMATE HAZARDS IN THE WAIKĪKĪ SPECIAL DISTRICT

Mahalo UH SOEST Climate Resilience Collaborative!

Accelerating Flood Risk

22

SEA LEVEL RISE PROJECTION

							LOOFO
Climate Risk Thresholds	APPR NEAR-TERM	OXIMATE THR	ESHOLD DE	CADE	LONG-TERM		
		1 FT SLR		2 FT SLR	3 FT SLR	4 FT SLR	
~2010 ~2	~2030	~2040	~2050	~2060	~2070	~2080	
Air Temperature/Heat Extremes Air Temperature/Heat avg							
Crtically Shallow Groundwater WSD Depth ~589 (<5 ft below land surface)	Threshold % WSD at depth	69% WSD at depth					
Compound Flooding (Kona Low + High Tide Flooding) fl	Threshold 0% WSD ooded	~42% WSD flooded					
High Tide-Driven Flo	boding Honolulu 2 days HTF/yr	~65 days HTF/yr					
	Sea Surface Extremes/Co	e Temperature oral Bleaching	WSD Threshold Onset of severe annual coral bleaching				
		Groundwate	er Inundation	WSD Threshold ~3% WSD inundated	~9% WSD inundated	~30% WSD inundated	
		Annual High Floc	Wave-Driven oding	WSD Threshold ~5% WSD flooded	~12% WSD flooded	~29% WSD flooded	
			Passive	Flooding	WSD Threshold ~5% WSD flooded	~18% WSD flooded	
Legend Varying Localized Threshold to Ac Impacts Impact	celerated S Widesprea	dImpacts	S torm Dra	in Backflow	WSD Threshold ~3% WSD flooded	~17% WSD flooded	

Scenario Overview

1 – Heat Extremes

Strategy Objective: Mitigate <u>temporary</u> and <u>widespread</u> extreme heat events

2 – Rainfall-Driven Compound Flooding (1 ft SLR, ~2040)

Strategy Objective: Mitigate <u>temporary</u> and <u>widespread</u> flooding from extreme rainfall events compounded by high tides and storm surge

3 – SLR-Driven Shallow Groundwater Exposure (1 ft SLR, ~2040)

Strategy Objective: Extend the useful life of subsurface infrastructure exposed to <u>permanent</u> and <u>widespread</u> shallow (<5 ft below land surface) groundwater

4 – SLR-Driven Groundwater Inundation (4 ft SLR, ~2080)

Strategy Objective: Address <u>permanent</u> and <u>localized</u> flooding from groundwater above land surface

5 – SLR-Driven Groundwater Inundation (6 ft SLR, ~2100) Strategy Objective: Address permanent and widespread flooding from groundwater above land surface

1 HEAT EXTREMES

IMPACTS

- <u>Widespread</u>, <u>temporary</u> extreme heat
- Respiratory illnesses, heatstroke, and cardiovascular and kidney disease
- Overwhelms to emergency services, health services, need for cooling centers
- Increasing energy costs with increased demand for air conditioning
- Damage to above ground infrastructure from heat
- Trees and vegetation stressed by heat extremes and drought-related water limitations

Poll

Heat Extremes

What impacts from heat events have you experienced

- Increased report of heat-related health issues
- Increased energy usage/higher utility bills
- Power failure/brown outs
- Physical damage to infrastructure (i.e. asphalt, metal structures)
- Loss of vegetation/landscaping
- Increased water usage/cost to maintain grounds and cooling towers

Have you taken any of the following actions?

- Distributed educational material on heat stroke to employees/residents
- Modified outdoor workers schedules
- Added more awnings and trees to increase shading
- Planted more heat tolerant species
- Increased permeable surfaces for evaporative cooling
- Used lighter colored/solar reflective surfaces/coatings (e.g. paving, structures)
- Other
- No action

Please go to menti.com and enter code 7224 7237

IMPACTS

- <u>Widespread</u>, <u>temporary</u> flooding from ~1 extreme rainfall event annually (>3 in rainfall/24 hrs)
- Road flood depths >1 and >2 ft localized along the Ala Wai Canal
- Disruption of transportation for residents, visitors, & emergency vehicles
- Disruption of electrical systems, storm drains, & wastewater systems

Flood modeling from UH SOEST Climate Resilience Collaborative (2023)

Poll

2021 and 2024 Kona Low Events

What flood impacts were experienced?

- Staff could not get to work
- Damaged property
- Flooded roads impeded transportation
- Flooded structures/parking areas at grade
- Flooded structures/parking areas below grade
- Flooded electrical systems
- Power outage
- **Other**

Please go to menti.com and enter code 7224 7237

What actions were taken?

- Pumped water from flooded below grade structures
- Protected building openings (e.g., sandbags)
- Hired clean up crew/specialized personnel

IMPACTS

- <u>Widespread</u>, <u>permanent</u> exposure of below-ground infrastructure
- Damage to below-ground infrastructure
 - Below grade parking/building foundations
 - Road base instability and potholes
 - Corrosion of subsurface utilities
- Difficulty in subsurface construction

Flood modeling from UH SOEST Climate Resilience Collaborative (2023)

Poll

Shallow groundwater (< 5 feet below ground surface)

What impacts from shallow groundwater have you experienced?

- Damaged subsurface structures/foundation
- Corroding/damaged subsurface infrastructure
- Roadbed damage
- Water accumulated during digging for construction or infrastructure repairs

What actions have been taken?

- Inspected structures for subsurface damages
- Repaired/replaced corroded subsurface infrastructure
- □ Fixed roadbed damage
- Pumped water out of construction/repair sites

Please go to menti.com and enter code 7224 7237

IMPACTS

- <u>Permanent</u>, <u>localized</u> flooding of the WSD
- Road flood depths >1 and >2 ft localized in West Waikīkī (Hobron) and along the Ala Wai Canal

3 SLR-DRIVEN GROUNDWATER INUNDATION (4 FT SLR, \sim 2080)

FLOOD RISK INDEX: Function of groundwater inundation, building footprint, and building age

3 RELATIVE RISK INDEX - SLR-DRIVEN GROUNDWATER INUNDATION (4 FT SLR)

Poll

Groundwater Inundation/Sunny Day High Tide Flooding/High Waves

What impacts have you experienced?

- Flooded structures/parking areas at grade
- □ Storm drain backflow
- Overtopping of Ala Wai Canal
- Structures/walkways impacted by wave energy
- Beach/shoreline erosion
- **Other**

Please go to menti.com and enter code 7224 7237

What actions have been taken?

- Hired clean up crew/specialized personnel
- Protected building openings (e.g., sandbags)
- Protected public walkways or outdoor areas (e.g., sandbags)
- Pumped water from flooded areas
- Other

IMPACTS

- <u>Widespread</u>, <u>permanent</u> flooding of infrastructure and structures
- Road flood depths greater than 1 and 2 ft throughout WSD

5 SLR-DRIVEN GROUNDWATER INUNDATION (6 FT SLR, ~2100)

5 SLR-DRIVEN GROUNDWATER INUNDATION (6 FT SLR, \sim 2100)

5 SLR-DRIVEN FLOODING (6 FT SLR, ~2100)

Laye

SOEST Climate Viewer

Potential Adaptation Strategies for Public and Private Sector Investment

Strategy Objective: Mitigate <u>temporary</u> and <u>widespread</u> extreme heat events

PUBLIC-PRIVATE ADAPTATION STRATEGIES PLANNED/IMPLEMENTEI) BY 2050
---	-----------

Adaptation Strategies	Public Investment	Private Investment
Conduct urban heat assessment	Х	
Provide shade through trees, awnings, or canopies	Х	Х
Use high solar reflectance building materials and colors for windows, pavements, and coatings		Х
Pilot cool and permeable alternatives to traditional pavements in parking lots, roads, and recreational spaces	X	Х
Facilitate cooling solutions and retrofits to protect residents/visitors from increasing temperatures		Х
Promote landscaping on rooftops and around buildings for cooling		Х

Strategy Objective: Mitigate temporary and widespread extreme heat events

Please go to menti.com and enter code 7224 7237 Or scan the QR code

Adaptation Strategies	Public Investment	Private Investment
Conduct urban heat assessment	Х	
Provide shade through trees, awnings, or canopies	X	X
Use high solar reflectance building materials and colors for windows, pavements, and coatings		X
Pilot cool and permeable alternatives to traditional pavements in parking lots, roads, and recreational spaces.	X	X
Facilitate cooling solutions and retrofits to protect residents from increasing temperatures.		Х

PUBLIC-PRIVATE ADAPTATION STRATEGIES PLANNED/IMPLEMENTED BY 2050

STRATEGY OBJECTIVE Mitigate <u>temporary</u> and <u>widespread</u> flooding from extreme rainfall events compounded by high tides and storm surge		Adaptation Strategies	Public Investment	Private Investment
		Prepare stormwater management plan with public and private sector solutions for storage, reuse, & delayed discharge	X	
		Implement a system for stormwater storage, reuse, & delayed discharge (eg, pumps, cisterns, green/blue roofs, floodable open spaces)	X	X
		Elevate/floodproof facility utility connections & critical equipment		X
		Develop emergency response routes & procure high-water emergency vehicles	Х	
H and the H		Install tidal backflow preventor	Х	
C 2		Use permeable pavers and trench drains	Х	Х
		Dry floodproof at-grade buildings		X
STORMWATER DELAY - STORE - DISCHARGE		Install passive flood barriers		V

RMWATER DELAY - STORE - DISCHARGE

STRATEGY OBJECTIVE

Extend the useful life of subsurface infrastructure exposed to <u>permanent</u> and <u>widespread</u> shallow (<5 ft below land surface) groundwater

PUBLIC-PRIVATE ADAPTATION STRATEGIES PLANNED/IMPLEMENTED BY 205

Adaptation Strategies	Public Investment	Private Investment
Conduct an integrated road/subsurface infrastructure adaptation/engineering/ economic study	Х	
Line public storm and sanitary sewer pipes & private laterals	Х	Х
Improve roadway strength and durability	Х	Х
Establish standards for subsurface building structure inspections	Х	Х
Assess potential revisions to standards for dry floodproofing buildings' below-grade areas	Х	
Repurpose or fill below-grade spaces/increase building height/density		X

STRATEGY OBJECTIVE

Address permanent and localized flooding from groundwater above land surface

Resilient Streetscape Transition Zone Detail

All Restitent Transition Zones must be ADA compliant

andard Design Elevation

Parting emrance
Barrier-tree ADA ramp up to

Blu land

OFE varia

Planars with sozing
Active ground foor up

Adaptation Strategies	Public Investment	Private Investment
Conduct infrastructure services phasing study	Х	
Revise WSD design guidelines/Develop overlay district to promote WSD-wide & localized flood resilience	Х	Х
Elevate roads and associated utilities for a localized area with early flood risk	X	
Require Right-of-Way Harmonization Agreements at elevated roads	Х	Х
Prepare standards for transition zones at elevated roads	Х	X
Repurpose or fill below-grade spaces/increase building height/density		X
Elevate buildings on open foundation/fill to new Design Flood Elevation		X
Conduct incremental retreat study: easements, TDR, public lands	Х	51

STRATEGY OBJECTIVE

Address <u>permanent</u> and <u>widespread</u> flooding from groundwater above land surface

IMPLEMENT RECOMMENDATIONS FROM SCENARIO 3, BASED ON:

- Feasibility/infrastructure services determinations
- Areas identified for protection, accommodation, or retreat
- Ala Wai Flood Control Project
- Beach Restoration and Maintenance Project
- Shoreline management and jurisdiction
- Availability of insurance
- Other yet known factors

Break out in Small Groups

SMALL GROUP DISCUSSION

- Polling Question
- Sticker Exercise

 You have a 4-sticker budget which you use however you like. You can put all four on one strategy or one sticker on individual strategies.

- Discussion
 - \circ Has anyone had experience with/or employed this adaptation strategy?

 \odot What are obstacles for implementation?

 How likely do you think property owners are to utilize this strategy by 2050 if the City provides guidance but does not require it?

Poll

2 RAINFALL-DRIVEN COMPOUND FLOODING (1 FT SLR, ~2040)

STRATEGY OBJECTIVE

Mitigate <u>temporary</u> and <u>widespread</u> flooding from extreme rainfall events compounded by high tides and storm surge Please go to menti.com and enter code 7224 7237 Or scan the QR code

Adaptation Strategies	Public Investment	Private Investment
Prepare stormwater management plan with public and private sector solutions for storage, reuse, & delayed discharge	Х	
Implement a system for stormwater storage, reuse, & delayed discharge (eg, pumps, cisterns, green/blue roofs, floodable open spaces)	X	Х
Elevate/floodproof facility utility connections & critical equipment		Х
Develop emergency response routes & procure high-water emergency vehicles	Х	
Install tidal backflow preventor	Х	
Use permeable pavers and trench drains	Х	Х
Dry floodproof at-grade buildings		Х
Install passive flood barriers		x ⁵⁵

To what extent is the strategy relevant/appropriate as an adaptation for Waikīkī?

SMALL GROUP DISCUSSION

- Polling Question
- Sticker Exercise

 You have a 4-sticker budget which you use however you like. You can put all four on one strategy or one sticker on individual strategies.

- Discussion
 - \circ Has anyone had experience with/or employed this adaptation strategy?

 \odot What are obstacles for implementation?

 How likely do you think property owners are to utilize this strategy by 2050 if the City provides guidance but does not require it?

3 SLR-DRIVEN SHALLOW GROUNDWATER EXPOSURE (1 FT SLR, ~2040)

STRATEGY OBJECTIVE Extend the useful life of subsurface infrastructure exposed to <u>permanent</u> and <u>widespread</u> shallow (<5 ft below land surface) groundwater

Please go to menti.com and enter code 7224 7237 Or scan the QR code

To what extent is the strategy relevant/appropriate as an adaptation for Waikīkī? Please adjust the slider from 1 (very relevant) to 5 (not relevant)

Adaptation Strategies	Public Investment	Private Investment
Conduct an integrated road/subsurface infrastructure adaptation/engineering/ economic study	X	
Line public storm and sanitary sewer pipes & private laterals	Х	Х
Improve roadway strength and durability	Х	Х
Establish standards for subsurface building structure inspections	Х	Х
Assess potential revisions to standards for dry floodproofing buildings' below-grade areas	Х	
Repurpose or fill below-grade spaces/increase building height/density		Х

SMALL GROUP DISCUSSION

- Polling Question
- Sticker Exercise

 You have a 4-sticker budget which you use however you like. You can put all four on one strategy or one sticker on individual strategies.

- Discussion
 - \circ Has anyone had experience with/or employed this adaptation strategy?

 \odot What are obstacles for implementation?

 How likely do you think property owners are to utilize this strategy by 2050 if the City provides guidance but does not require it?

4 SLR-DRIVEN GROUNDWATER INUNDATION (4 FT SLR, \sim 2080)

To what extent is the strategy relevant/appropriate as an adaptation for Waikīkī Please adjust the slider from 1 (very relevant) to 5 (not relevant)

calized	Adaptation Strategies	Public Investment	Private Investment
above	Conduct infrastructure services phasing study	X	
	Revise WSD design guidelines/Develop overlay district to promote WSD-wide & localized flood resilience	Х	Х
7	Elevate roads and associated utilities for a localized area with early flood risk	X	
	Require Right-of-Way Harmonization Agreements at elevated roads	X	Х
	Prepare standards for transition zones at elevated roads	X	Х
	Repurpose or fill below-grade spaces/increase building height/density		Х
	Elevate buildings on open foundation/fill to new Design Flood Elevation		X
	Conduct incremental retreat study: easements, TDR, public lands	Х	59

Address <u>permanent</u> and <u>localized</u> flooding from groundwater above land surface

Please go to menti.com and enter code 7224 7237 Or scan the QR code

STRATEGY OBJECTIVE

SMALL GROUP DISCUSSION

- Polling Question
- Sticker Exercise

 You have a 4-sticker budget which you use however you like. You can put all four on one strategy or one sticker on individual strategies.

• Discussion

• What are your expectations from the top voted strategy?

O What are your expectations for public and private investment for these strategies?

 \odot What are your expectations from a hybrid scenario?

Given the impacts with 6 feet of sea level rise, please rank the factors you are most concerned about (first = most concerned)

- Feasibility of continued infrastructure
- Cost to private landowners to adapt in place
- Loss of useable land area/shoreline erosion
- Loss of recreational beaches
- Increased flooding from the Ala Wai Canal/major storm events
- Property insurance costs and availability
- Other

Given the impacts with 6 feet of sea level rise, how much do you favor each adaptation strategy? Please adjust the slider from 1 (highly favor) to 5 (do not favor)

- Managed Shoreline
- Adapt-in-Place
- Managed Retreat
- Managed Elevation
- Hybrid Approach

Next Steps

Scope, Schedules and Tasks

Next Steps

- Charrette #3 –
- Waikiki Residential Community Focus
 - Identify adaptation strategies/flood mitigation measures for residential properties/structures
 - Format: presentation and facilitated small group scenario discussions

Resources

Project Website:

https://www.honolulu.gov/dpp/planning/planningdocuments/area-adaptation-plans/waikiki2050.html

- Climate Risk Profile
- Project Fact Sheet

Adapt Waikīkī 2050

Mahalo Q&A