

Adapt Waikiki 2050

Mayor Rick Blangiardi

Charrette #1

May 13, 2024 | 8:30 AM – 11:30 AM Ala Wai Golf Course Clubhouse, 2nd Floor

Introductions and Agenda Noelle Cole, DPP

Project Team

Workshop Green, LLC

Client

Lead Consultant

Noelle Cole Dina Wong Imelda Fernandez

Kitty Courtney Carol Hufnagel **Melissa May** Malachi Krishok Ollie Lau Alice McLean Rachael Han

Wendy Meguro

Project Manager Team member

Meeting Objectives

- Introduce the project and consultant team
- Present Climate Change scenarios facing public infrastructure in Waikīkī
- Identify and discuss feasibility of potential adaptation solutions to mitigate flood risk.

Climate Risk Scenarios

Kitty Courtney, Tetra Tech, Inc.

AW2050 Plan Results Statement

Within the **next 25 years**, recommendations have been implemented to:

- Protect public safety from temporary but extreme rainfall-driven flood events;
- Improve the indoor/outdoor environment of Waikiki
 through ecological enhancement of stormwater management;
- Extend the useful life of subsurface infrastructure exposed to shallow groundwater in a cost-effective manner; and
- Identify and plan for viable adaptation pathways based on level of service determinations for land use and infrastructure in the WSD over the long term.

Scenario Overview

1 – Rainfall-Driven Compound Flooding (1 ft SLR, ~2040)

Strategy Objective: Mitigate <u>temporary</u> and <u>widespread</u> flooding from extreme rainfall events compounded by high tides and storm surge

2 – SLR-Driven Shallow Groundwater Exposure (1 ft SLR, ~2040)

Strategy Objective: Extend the useful life of subsurface infrastructure exposed to <u>permanent</u> and <u>widespread</u> shallow (<5 ft below land surface) groundwater

3 – SLR-Driven Groundwater Inundation (4 ft SLR, ~2080)

Strategy Objective: Address <u>permanent</u> and <u>localized</u> flooding from groundwater above land surface

4 – SLR-Driven Groundwater Inundation (6 ft SLR, ~2100)

Strategy Objective: Address <u>permanent</u> and <u>widespread</u> flooding from groundwater above land surface

IMPACTS

- Widespread, temporary flooding from ~1 extreme rainfall event annually (>3 in rainfall/24 hrs)
- Road flood depths greater than 1 and 2 ft localized along the Ala Wai Canal
- Disruption of transportation for residents, visitors, & emergency vehicles
- Disruption of electrical systems, storm drains, & wastewater systems

Flood modeling from UH SOEST Climate Resilience Collaborative (2023)

1 RAINFALL-DRIVEN COMPOUND FLOODING (1 FT SLR, ~2040)

STRATEGY OBJECTIVE

 Mitigate <u>temporary</u> and <u>widespread</u> flooding from extreme rainfall events compounded by high tides and storm surge

ADAPTATION STRATEGIES

- Tidal Backflow Preventer
- Stormwater delay, storage, and discharge system
- Green/Blue Roofs
- Floodable Open Spaces
- Stormwater Pumps
- Trench Drains
- Permeable Pavers
- Elevate/Floodproof Electrical Systems, Pump Stations, and Critical Facilities in Buildings
- Emergency Response Routes & High-Water Rescue Vehicles

IMPACTS

- Widespread, permanent exposure of below-ground infrastructure
- Damage to below-ground infrastructure
 - Below grade parking/building foundations
 - Road base instability and potholes
 - Corrosion of subsurface utilities
- Difficulty in subsurface construction

Flood modeling from UH SOEST Climate Resilience Collaborative (2023)

STRATEGY OBJECTIVE

 Extend the useful life of subsurface infrastructure exposed to <u>permanent</u> and <u>widespread</u> shallow (<5 ft below land surface) groundwater

ADAPTATION STRATEGIES

- Water/wastewater lining
- Vaulted utilities/utility vaults
- Economic analysis of adaptation strategies for subsurface infrastructure
- Low-pressure sewage system
- Improve roadway strength and durability

IMPACTS

- Permanent flooding of localized areas of the WSD
- Road flood depths greater than 1 and 2 ft localized in West Waikīkī (Hobron) and along the Ala Wai Canal

3 SLR-DRIVEN GROUNDWATER INUNDATION (4 FT SLR, \sim 2080)

RISK INDEX: function of building footprint, building age, and groundwater inundation

3 RELATIVE RISK INDEX - SLR-DRIVEN GROUNDWATER INUNDATION (4 FT SLR)

RELATIVE RISK INDEX - ANNUAL HIGH WAVE-DRIVEN FLOODING (4 FT SLR)

Relative Risk Index for Annual High Wave-Driven Flooding (4ft SLR)

STRATEGY OBJECTIVE

 Address <u>permanent</u> and <u>localized</u> flooding from groundwater above land surface

ADAPTATION STRATEGIES

- Elevated Roads and Associated Utilities in Localized Area
- Right-of-Way Harmonization Agreements
- Above Grade Utilities
- Utilities Elevated under Bridges and Elevated Walkways
- Resilient Transition Zone
- Transportation Connectivity /Infrastructure Design and Feasibility Study
- Level of Service Phase Out Study

4 SLR-DRIVEN GROUNDWATER INUNDATION (6 FT SLR, ~2100)

IMPACTS

- Widespread, permanent flooding of infrastructure and structures
- Road flood depths greater than 1 and 2 ft throughout WSD

4 SLR-DRIVEN GROUNDWATER INUNDATION (6 FT SLR, ~2100)

4 SLR-DRIVEN GROUNDWATER INUNDATION (6 FT SLR, ~2100)

STRATEGY OBJECTIVE

 Address <u>permanent</u> and <u>widespread</u> flooding from groundwater above land surface

ADAPTATION STRATEGIES

- Protect (Harden)
- Accommodate (Adapt in Place)
- Preserve and Restore (Nature-Based)
- Managed Retreat (Relocation)
- Managed Elevation
- Hybrid Strategy

Summary of pre-meeting homework

Ollie Lau, SSFM

Problem Area Map

Planned Capital Improvement Projects

Agency											
	Estimated SLR		~1 ft			~2 ft	~3 ft	~4 ft	5 ft	6 ft	
	2020	<mark>2024</mark>	2030	2040	2050	2060	2070	2080	2090	2100	2110
U.S. Army			Replace Koa Oasis Beach Shack, Hale Koa Hotel								
USAGHI			Storm Drain Maintena	nce, Ft Derussy							
ENV			New Wastewater Pump Station, Ala Moana Beach Park								
ENV			Rehabilitate gravity se	wer - Chinatown/Kaka'	ako						
ENV			Rehabilitate and construct new sewer lines - Iwilei								
USAGHI			Repair Kalia Rd and sidewalk								
USAGHI			Repair pathway lights, Hale Koa Hotel								

Explanation of Activity

Malachi Krishok, SSFM

Activity

- The color on your name tag corresponds to a group.
 - Blue go to Table 1
 - Orange go to Table 2
 - Purple go to Table 3
 - Pink go to Table 4
- Each group will have 25 minutes per station.
- There will be a 5 minute break after each station. Longer break after session 2.
- During the exercises feel free to take notes on post its, draw, and discuss with your group.
- Build on the work done by previous groups as you transition through the stations.

Session 1

5-Minutes Left!

Session 2

5-Minutes Left!

Session 3

5-Minutes Left!

Session 4

5-Minutes Left!

Report Out Noelle Cole, Department of Planning and Permitting

Next Steps

Noelle Cole, Department of Planning and Permitting

Next Steps

Next Steps

- One Water Plan & Updates
- Working Group Meeting #3 (virtual)
 - Proposed for June12th or July 1st 2024
 - Review Draft Recommendations
- Charrette #2 (in-person)
 - Proposed for August 14th or 29th 2024
 - Private Development Stakeholders
- Charrette #3
 - TBD

Working Group Member Portal

Scan QR Code to access site

URL: <u>https://ssfm.konveio.com/adapt-waikiki-2050</u> Working Group Password: 1 Water

4